HILBERT SCHEMES OF SOME THREEFOLD SCROLLS OVER Fe
نویسنده
چکیده
Hilbert schemes of suitable smooth, projective threefold scrolls over the Hirzebruch surface Fe, e ≥ 2, are studied. An irreducible component of the Hilbert scheme parametrizing such varieties is shown to be generically smooth of the expected dimension and the general point of such a component is described.
منابع مشابه
Geometry and Intersection Theory on Hilbert Schemes of Families of Nodal Curves
We study the relative Hilbert scheme of a family of nodal (or smooth) curves, over a base of arbitrary dimension, via its (birational) cycle map, going to the relative symmetric product. We show the cycle map is the blowing up of the discriminant locus, which consists of cycles with multiple points. We work out the action of the blowup or ’discriminant’ polarization on some natural cycles in th...
متن کاملOn Families of Rank-2 Uniform Bundles on Hirzebruch Surfaces and Hilbert Schemes of Their Scrolls
Several families of rank-two vector bundles on Hirzebruch surfaces are shown to consist of all very ample, uniform bundles. Under suitable numerical assumptions, the projectivization of these bundles, embedded by their tautological line bundles as linear scrolls, are shown to correspond to smooth points of components of their Hilbert scheme, the latter having the expected dimension. If e = 0, 1...
متن کاملStructure of the Cycle Map for Hilbert Schemes of Families of Nodal Curves
We study the relative Hilbert scheme of a family of nodal (or smooth) curves, over a base of arbitrary dimension, via its (birational) cycle map, going to the relative symmetric product. We show the cycle map is the blowing up of the discriminant locus, which consists of cycles with multiple points. We study certain loci called node scrolls which play in important role in the geometry of the cy...
متن کاملSome Properties of $ ast $-frames in Hilbert Modules Over Pro-C*-algebras
In this paper, by using the sequence of adjointable operators from pro-C*-algebra $ mathcal{A} $ into a Hilbert $ mathcal{A} $-module $ E $. We introduce frames with bounds in pro-C*-algebra $ mathcal{A} $. New frames in Hilbert modules over pro-C*-algebras are called standard $ ast $-frames of multipliers. Meanwhile, we study several useful properties of standard $ ast $-frames in Hilbert modu...
متن کاملG-positive and G-repositive solutions to some adjointable operator equations over Hilbert C^{∗}-modules
Some necessary and sufficient conditions are given for the existence of a G-positive (G-repositive) solution to adjointable operator equations $AX=C,AXA^{left( astright) }=C$ and $AXB=C$ over Hilbert $C^{ast}$-modules, respectively. Moreover, the expressions of these general G-positive (G-repositive) solutions are also derived. Some of the findings of this paper extend some known results in the...
متن کامل